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A
bstract. Weused data-analytics approaches to develop, calibrate, and validate predictive
models, to help urologists in a large statewide collaborative make prostate cancer staging
decisions on the basis of individual patient risk factors. The models were validated using
statistical methods based on bootstrapping and evaluation on out-of-sample data. These
models were used to design guidelines that optimally weigh the benefits and harms of
radiological imaging for the detection of metastatic prostate cancer. The Michigan Uro-
logical Surgery Improvement Collaborative, a statewide medical collaborative, imple-
mented these guidelines, which were predicted to reduce unnecessary imaging by more
than 40% and limit the percentage of patients with missedmetastatic disease to be less than
1%. The effects of the guidelines were measured after implementation to confirm their
impact on reducing unnecessary imaging across the state of Michigan.
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1. Introduction
Prostate cancer is the most commonly diagnosed
cancer and the third leading cause of death by cancer
in Americanmen (Hricak et al. 2007). It was estimated
that in 2019, 174,650 news cases of prostate cancer
would be diagnosed and approximately 31,620 men
would die of the disease in the United States (American
Cancer Society 2019a). For each newly diagnosed
cancer case, clinical stagingwill be performed,which is
an assessment of how far the cancer has spread based
on the results from biopsy, blood tests, and imaging
(American Cancer Society 2019b). Prostate cancer is a
solid tumor that exhibits a tendency to metastasize to
the bones. The skeleton is the site of first and main
metastasis in about 80% patients with prostate can-
cer; therefore, bone metastases are one of the most
important prognostic factors (Tombal and Lecouvet
2012). Bone metastases are associated with consid-
erable morbidity (pain, reduced mobility, pathological
fractures, and spinal cord and nerve compression), re-
duced survival (five-year survival is 3%), and also
significant economic health implications, including
the costs of systematic therapies, imaging, and hos-
pital admissions (Pockett et al. 2010, Yong et al. 2014,
Broder et al. 2015). The presence of lymph node
metastasis is also an important prognostic factor,
indicating great risk for progression to bone metas-
tases and death (Fuchsjäger et al. 2008). As of today,
metastatic prostate cancer is still considered incur-
able, but there are treatment options that can increase
1

survival. Therefore, accurate staging is crucial for the
clinicalmanagement of prostate cancer, from possible
cure (in patients without metastases) to alleviating
symptoms and improving quality of life (in patients
with metastases).
Conventional imaging tests for prostate cancer

staging include bone scans (BSs) and computed to-
mography (CT) scans for detection of bone and lymph
node metastases, respectively. However, not all men
with newly diagnosed prostate cancer are at the same
risk of harboring metastatic cancer. This is an im-
portant consideration, because there are harms as-
sociated with both under- and overimaging. Under-
imaging results in patients’metastatic prostate cancer
going undetected. In such cases, patients are sub-
jected to treatments, such as radical prostatectomy
(surgical removal of the prostate), that are unlikely to
benefit them and can lead to serious side effects and
negative health outcomes due to delays in chemo-
therapy (Lavery et al. 2011, Prasad et al. 2012, Kim
et al. 2015). Overimaging causes potentially harmful
radiation exposure (Prasad et al. 2004, Smith-Bindman
et al. 2009, Lin 2010), anxiety for the patient, and false
positive findings that lead to risky and painful follow-
up procedures (i.e., bone biopsy). Not only do these
imaging tests expose the patient to excess radiation,
but they also increase financial and time burdens both
on the patient and healthcare system.
There are several international evidence-based guide-

lines indicating the need for BSs and CT scans only in
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patients with certain unfavorable risk factors; how-
ever, the guidelines vary in their recommendations,
and there is no consensus about the optimal use of BSs
and CT scans for men newly diagnosed with prostate
cancer (Thompson et al. 2007, Briganti et al. 2010,
Carroll et al. 2013,Heidenreich et al. 2014,Mottet et al.
2014, National Comprehensive Cancer Network 2014).
Thus, there exists persistent variation in utilization
among urologists, including unnecessary imaging in
patients at low risk for metastatic disease and poten-
tially incomplete staging of patients at high risk. To
address this issue, we took a holistic perspective to
determinewhich patients should receive a BS and/or a
CT scan and which patients can safely avoid imaging
on the basis of individual risk factors. Because a ran-
domized trial is not possible for practical and ethical
reasons for the imaging of prostate cancer staging, we
proposed data-driven approaches and evaluated them
in a population-based sample of men with newly di-
agnosed prostate cancer from the diverse academic
and community practices in the Michigan Urological
Surgery Improvement Collaborative (MUSIC), which
includes 90% of the urologists in the state (see http://
musicurology.com/).

We used a collection of methods including statis-
tics, machine learning, and optimization methods
that we collectively refer to as data-analyticsmethods.
The key contributions of this article are as follows:

• Risk prediction models for metastatic prostate cancer.
We develop risk prediction models that accurately
estimate the probability of a positive imaging test.
We perform internal validation of these models via
bootstrapping and an out-of-sample evaluation of the
predictions. These models were subsequently used to
evaluate the diagnostic accuracy of imaging guide-
lines while accounting for the bias introduced by the
patients with nonverified disease status, and to op-
timize imaging guidelines for which patients should
receive a BS or CT scan.

• Classification modeling for metastatic cancer detec-
tion. We utilize optimization and machine learning
methods to design classification rules that distinguish
metastatic patients from cancer-free patients. To our
knowledge, this is the first study to employ classifi-
cation modeling techniques in the detection of meta-
static prostate cancer considering (1) the exploitation
of data for the patients who did not have the gold-
standard tests (either BS or CT scan) at diagnosis and
(2) the incorporation of a cost-sensitive learning scheme
to deal with the class imbalance problem simulta-
neously in the learning framework.

• Bias-corrected performance of imaging guidelines.
Because not all men with newly diagnosed prostate
cancer underwent imaging,we applied statisticalmethods
to mitigate bias to evaluate the diagnostic accuracy of
imaging guidelines for detection of metastatic disease.
Our definition of imaging guidelines is the union of
previously published clinical guidelines and opti-
mized classification rules we developed using ma-
chine learning methods.
• Implementation and measurement of impact. Fol-

lowing adoption of the guidelines, the impact on BS
and CT utilization was evaluated to confirm the
predicted results that indicated a similar or improved
detection rate and substantial reductions in unneces-
sary imaging. Therefore, this article also serves as a
case study of the practical implementation of data-
analytics methods with measurable impact.
Themost significant novel aspect of this study is the

combination of multiple methods drawing from op-
erations research, statistics, and machine learning to
create a framework for addressing important decision-
making problems in the context of imperfect observa-
tional data. This stems from the study’s goal to make
practical recommendations, which requires careful
consideration of factors that are often overlooked in
more methodologically focused studies. We are also,
to the best of our knowledge, the first to simulta-
neously consider the exploitation of unlabeled data
(for patients who did not have the gold-standard tests
at diagnosis) and the incorporation of a cost-sensitive
learning scheme to deal with class imbalance, based
on a novel extension (discussed in Section 3) of the
data-dependent geometric regularization framework
proposed by Belkin et al. (2006).
Figure 1 illustrates the linkages between each of the

components of the research design for this project,
from data processing to implementation. The re-
mainder of this paper is structured as follows. Section 2
describes the methodological approach for the de-
velopment and validation of risk prediction models
and proper measures for evaluating prediction per-
formance. Section 3 reviews the challenges of classi-
fication modeling in imbalanced observational health
data and describes our proposed algorithm for cost-
sensitive semisupervised learning. Section 4 provides
background on the problem of verification bias and
describes the methodological approach we consid-
ered in tackling the bias for correcting the diagnostic
accuracy of imaging guidelines. Section 5 describes
the implementation process and the impact of our
work based on postimplementation analysis. Section 6
highlights our main conclusions and states some points
for future research.

2. Risk Prediction Models for Metastatic
Prostate Cancer

In order for a risk prediction model to be useful for
personalized medicine and patient counseling, it is
necessary to ensure the model is calibrated to pro-
vide reliable predictions for the patients. This section
describes the development and testing of predictive

http://musicurology.com/
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Figure 1. (Color online) Research Framework Illustrating the Major Steps from Data Preprocessing to Implementation and
Measurement of ImpactQ: 71

Note. Straight lines represent the connections between major processing steps involved in the proposed research framework (in rectangles), and
dashed lines represent the flow of input/output (in ellipses) between the processes.
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models for estimating the probability of an imaging
test that was positive for metastases.

2.1. Clinical Data Sets and Variables
Established in 2011 with funding from Blue Cross
Blue Shield of Michigan, MUSIC is a consortium of 43
practices from throughout Michigan that aims to
improve the quality and cost-efficiency of care pro-
vided to men with prostate cancer. Each practice
involved in MUSIC obtained an exemption or ap-
proval for participation from a local institutional
review board.

Prostate cancer is diagnosed by biopsy, which in-
volves extraction of tissue (normally 12 samples) from
the prostate. These samples produce useful predictors
of metastasis, such as a pathology grading called a
Gleason score (GS), a percentage of positive samples
(also called cores) that show cancer, and themaximum
percentage of core involvement. These risk factors are
determined by review of biopsy samples by a trained
pathologist. If cancer cells are found upon evaluation
of biopsy samples, the pathologist will give the most
common pattern a grade of 1 to 5. The second most
common cell pattern will also be given a grade of 1
to 5. These two grades are then added together to
obtain the patient’s GS between 2 and 10 (Cancer.Net
2019). The GS is a pathological characterization of the
cancer cells that is correlated with the risk of me-
tastasis, and the percentage of positive cores and
the maximum core involvement are correlated with
tumor volume. Other potentially relevant risk factors
for metastasis include a patient’s age, prostate-specific
antigen (PSA) score, and clinical T stage. A PSA test
is a simple blood test that indicates the amount of
PSA, a protein produced by cells of the prostate gland,
that escapes into the blood from the prostate. Patients
with higher than normal PSA values have a greater
risk of metastatic prostate cancer. The clinical T stage
is part of the TNM staging system for prostate cancer
that defines the extent of the primary tumor based on
clinical examination. These three clinical risk factors
(serumPSAat diagnosis, GS, and clinical T stage) help
determine whether radiological imaging (BS or CT
scan) is needed to complete the staging of the prostate
cancer patient.
The MUSIC registry contains detailed clinical and

demographic information, including patient age, se-
rum PSA at diagnosis, clinical T stage, biopsy GS, total
number of biopsy cores, number of positive cores, and
the receipt and results of imaging tests ordered by the
treating urologist. Appendix A presents the clinical
characteristics of patients included in the analytic
samples for BS and CT scan. The initial analysis for BS
included 1,519 patients with newly diagnosed pros-
tate cancer seen at 19 MUSIC practices in Michigan
from March 2012 through June 2013, and among this
group, 416 (27.39%) underwent staging BS. Among
the patients that received a BS, 48 (11.54%) had a
positive outcome with evidence for bone metastasis.
The cohort for CT scan included 2,380 men with
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newly diagnosed prostate cancer from 27 MUSIC
practices fromMarch 2012 to September 2013. Among
2, 380 patients, 643 (27.02%) of them underwent a
staging CT scan, and 62 (9.64%) of these studies were
interpreted as positive for metastasis. Patients who
underwent imaging had significantly higher PSA
levels, biopsyGS, and clinical T stages than thosewho
did not receive imaging (Appendix A, all p < 0.0001).

We performedunivariate andmultivariate analyses
to examine the association between imaging out-
comes and all routinely available clinical variables in
imaged patients. The results from these analyses are
presented in our earlier work (Merdan et al. 2014,
Risko et al. 2014). We included all variables with a
statistically significant association, which were as
follows: age at diagnosis, natural logarithmof PSA+ 1
(ln(PSA + 1)), biopsy GS (≤3 + 4, 4 + 3, or 8 − 10),
clinical T stage (T1, T2, or T3/4), and the percentage of
positive biopsy cores. We used a logarithmic trans-
formation of PSA scores because the distribution of
PSA scores was highly skewed.

2.2. Predictive Models
Suppose that l patients have been imaged and we are
given the empirical training data (x1, y1), . . . , (xl, yl) ∈
Rd × {±1} of those patients, where yi’s are the binary
imaging outcomes and d is the number of patient
attributes (e.g., age, Gleason score, PSA, etc.). Let X ∈
Rl×d be the data matrix and y be the binary vector of
imaging outcomes. For every attribute vector xi ∈ Rd

(a row vector in X), where i � 1, . . . , l, the outcome is
either yi � 1 or yi � −1, where 1 corresponds to a
positive test and −1 to a negative test. We assume that
an intercept is included in xi.

We use logistic regression (LR) models to estimate
the probability of a positive imaging outcome. The
discriminative model for LR is given by

P yi � ±1 | xi,β( ) � 1
1 + e−yiβTxi

. (1)

Under this probabilistic model, the parameter β is
estimated via maximum likelihood estimation (MLE)
by minimizing the conditional negative log-likelihood

− logL β
( ) � − log

∏l

i�1
P yi � ±1 | xi,β( )

� ∑l

i�1
log 1 + e−yiβ

Txi
( )

(2)

to obtain well-calibrated predicted probabilities.

2.3. Statistical Validation
To evaluate the accuracy of our risk prediction models,
we performed both internal and external validation.
Internal validation uses the same data set to develop
and validate the model, and external validation uses
an independent data set to validate the model. We
used internal validation at early stages of the project
when a limited number of samples were available; we
subsequently conducted external validation later in
the project when a suitable amount of additional data
had been collected.
Validating a predictive model using the develop-

ment sample will introduce bias, known as optimism,
because the model will typically fit the training data
set better than a new data set. Given the intention to
implement these guidelines for clinical practice, it
was necessary to carefully consider this bias. Al-
though internal validation is commonly done by
randomly splitting the data set into a training sample
and a validation sample, this approach is argued to be
statistically inefficient, as not all available data are
used to develop the prediction model. Therefore,
bootstrapping is the preferred method for internal
validation, especially when the development sample
is relatively small or a high number of candidate
predictors is studied (Harrell et al. 1996, Efron and
Tibshirani 1997). Given its efficiency in predictive
modeling with logistic regression in small data sets,
we used bootstrapping to obtain valid estimates of the
expected optimism in predictive performance before
we had enough out-of-sample data to validate our
models. (Steyerberg et al. 2001, 2003).
Because internal validation has limitations in de-

termining the generalizability of a predictive model
(Bleeker et al. 2003), we conducted external validation
to confirm the validity of the predictive models using
new data that were unavailable during the initial
model building process. Following is a description of
the performance measures that we used to evaluate
our models for both forms of validation, as well as a
detailed explanation of our two-stage internal and
external validation approach.

2.3.1. Performance Metrics. There are two primary
aspects in the assessment of the predictive model
accuracy: assessment of discrimination and calibration.
Discrimination refers to the ability of the predictive
models to distinguish patients with and without
metastatic disease, and calibration refers to the agree-
ment between the predicted and observed probabilities.
Discriminationwas quantified using the area under

the receiver operating characteristic (ROC) curves.
The area under the ROC curve (AUC) indicates the
likelihood that for two randomly selected patients,
one with and one without metastasis, the patient with
metastasis has the higher predicted probability of a
positive imaging outcome. TheAUCprovides a single
measure of a classifier’s performance for evaluating
which model is better on average, and assesses the
ranking in terms of separation of metastatic patients
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from cancer-free patients (Tokan et al. 2006). The
larger the AUC, the better the performance of the
classification model.

We assessed the calibration of the predicted prob-
abilities via the Brier score. The Brier score is the av-
erage squared difference between the observed label
and the estimated probability, calculated as

∑n
i�1(yi −

P(yi � 1 | xi,β))2/n, where we assume that n is the size
of the sample with which the model is being assessed
and y ∈ {0, 1}. We introduced y ∈ {−1, 1} earlier in
Section 2.2, as this labeling renders the formulation of
the logistic loss function as partial losses introduced
later in Section 3.2 easier to understand. By definition,
the Brier score summarizes both calibration and dis-
crimination at the same time: the square root of the
Brier score (root mean squared error) is the expected
distance between the observation and the predic-
tion on the probability scale, and lower scores are
thus better.

In addition to the Brier score, we evaluated the
calibration of the model predictions by estimating the
slope of the linear predictor (LP) of the LR model,
known as the calibration slope (Miller et al. 1993). The
LP is the sum of the regression coefficients multiplied
by the patient value of the corresponding predictor
(i.e., for patient i, LPi � xiβ). By definition, the cali-
bration slope is equal to one in the development
sample. In an external validation sample, the cali-
bration slope, βcalibration, is estimated using an LR
model with the linear predictor as the only explan-
atory variable (i.e, logit(P(y � 1)) � α + βcalibrationLP;
Cox 1958). The two estimated parameters in this
model, α and βcalibration, are measures of calibration of
the LR model in the external validation sample. We
can use these parameters to test the hypothesis that
the observed proportions in the external data set are
equal to the predicted probabilities from the original
model. The slope, βcalibration, is a measure of the di-
rection and spread of the predicted probabilities.
Well-calibratedmodels have a slope of one, indicating
predicted risks agree fully with observed frequencies.
Models providing overly optimistic predictions will
have a slope that is less than one, indicating that
predictions of low-risk patients are underestimated
and predictions of high-risk patients are overesti-
mated (Miller et al. 1993, Harrell et al. 1996).

We assessed themodel calibration graphically with
calibration plots. We divided the patients into 10
approximately equal-sized groups according to the
deciles of the predicted probability of a positive
outcome as derived from the fitted statistical model.
Within each decile, we determined the mean pre-
dicted probability (x-axis) and the true fraction of
positive cases (y-axis). If the model is well-calibrated,
the points will fall near the diagonal line.
2.3.2. Validation Process. In order to determine the
internal validity of the predictive models, we used
bootstrapping. It involves sampling from the devel-
opment sample, with replacement, to create a series of
random bootstrap samples. In each bootstrap sample,
we fit a new LR model and apply this model to the
development sample. The expected optimism is then
calculated by averaging the differences between the
performance of the models developed in each of the
bootstrap samples (i.e., bootstrap performance) and their
performance in the development sample (i.e., test
performance). The optimism is then subtracted from
the apparent performance of the original model fit in
the development sample to estimate the internally vali-
datedperformance.Algorithm 1 parallels the approach
in Efron and Tibshirani (1994), where P(·) represents
anyof the threeperformancemetrics thatwedescribed in
the previous section.Weused this approach to internally
validate the model calibration and discrimination.

Algorithm 1 (Bootstrapping Algorithm for Internal
Validation)
Input: A predictive model, a development sample

of n patients and the number of bootstrap
replications m.

Output: The internally validated performance,
Pvalidated.

Estimate the apparent performance of the predic-
tive model, Papparent, fit in the development sample.

for i � 1, . . . ,m do
Draw a random bootstrap sample of n patients

from the development sample with replacement.
Fit the logistic regression model to the bootstrap

sample and measure the apparent performance
in the same sample, Pbootstrap(i).

Apply the bootstrap model to the development
sample and estimate the test performance of
this bootstrap model, Ptest(i).

Calculate an estimate of the optimism, o(i) �
Pbootstrap(i) − Ptest(i) .

Estimate the expected optimism:

Optimism �
∑m
i�1

o i( )
m

.

return Pvalidated � Papparent −Optimism.

Following our analysis and guideline development
in the initial stages of this project, new validation data
sets became available for BS andCT scan,whichweused
to confirm thevalidityof thedevelopedpredictivemodels.
The inclusion and exclusion criteria, data collection, and
clinical variables were identical to those used for the de-
velopment samples. As part of our external validation, we
validated the risk prediction models on these external
validation sets using the performancemeasures described
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above to estimate discrimination and calibration. We
also assessed the external calibration via calibration
plots, which we discussed in Section 2.3.1.

2.4. Statistical Validation Results
Based on the approach described in Section 2.3.2, we
calculated the expected optimism for the AUC, Brier
score, and calibration slope (Table 1). Comparison
of the apparent performance of the risk prediction
models with the optimism-corrected performance
supported the precision of the model performance
estimates in the initial stage of the project.

To assess the generalizability of these models, we
evaluated the performance estimates in independent
external validation samples collected approximately
one year after our initial analysis. Table 2 summarizes
the results from the external validation of the pre-
dictivemodels. The validation sample for BS included
664 patients, of which 64 (9.64%) had a positive out-
come with evidence for bone metastasis, and that for
CT scan included 507 patients, of which 42 (8.28%)
were interpreted as positive for lymph node metas-
tasis. The change in theAUC between the internal and
external validations for BS and CT models was not
significant (e.g., 0.01). The increase in the calibration
slopes and decrease in the Brier score demonstrate
that our models are well calibrated to the external
validation samples. Overall, the expected optimism
and optimism-corrected performance as estimated
with bootstrapping agreed well with that observed
with independent validation samples.
Table 1. Bootstrap Results for the Developmen

me

Apparent performance
AUC
Brier score
Calibration slope

Bootstrap performance
AUC
Brier score 0
Calibration slope

Test performance
AUC
Brier score 0
Calibration slope

Expected optimism
AUC 0
Brier score −0
Calibration slope
Optimism-corrected performance

AUC
Brier score
Calibration slope

Note. In the development samples for BS and CT sca
calculation of both the means and standard errors (S
The calibration plots in Figure 2 compare observed
and predicted probability estimates for the BS and CT
scan models. The results show good calibration in the
external validation samples. Note that there is only
one case in which there is a statistically significant
difference from perfect calibration. The results from
internal and external validation demonstrate that the
risk prediction models are well calibrated.

3. Classification Modeling for Metastatic
Cancer Detection

This section describes (1) an optimization-based ap-
proach for the development of classification models that
account for missing labels (i.e., imaging outcomes) and
class imbalance, and (2) alternative classification mod-
eling techniques that are adapted for advancing the
recognition of metastatic patients in imbalanced data.

3.1. Background on Classification with Unlabeled
and Imbalanced Data

We identify two important challenges regarding the
development of classification models in diagnostic
medicine: learning from unlabeled data and learning
from imbalanced data. The first challenge, unlabeled
data, arises from the fact that in practice not all pa-
tients receive a BS or CT scan at diagnosis, which
results in a missing data problem. The second chal-
lenge, imbalanced data, arises from the fact that a
minority of patients have metastatic cancer. To ad-
dress each of these challenges, we study two machine
t Samples

Development samples

BS (n � 416)
an ± SEbootstrap

CT scan (n � 643)
mean ± SEbootstrap

0.84 0.89
0.075 0.057
1 1

0.86 ± 0.032 0.89 ± 0.021
.073 ± 0.0098 0.056 ± 0.0072

1 1

0.83 ± 0.011 0.88 ± 0.0086
.078 ± 0.0016 0.059 ± 0.0014
0.86 ± 0.18 0.90 ± 0.12

.023 ± 0.032 0.014 ± 0.022
.0048 ± 0.0099 −0.0028 ± 0.0072
0.86 ± 0.18 0.90 ± 0.12

0.82 0.87
0.080 0.060
0.86 0.90

n, 1,000 bootstrap Q: 74repetitions were used for the
Ebootstrap).
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Table 2. Internal and External Validation Results of the Risk Prediction Models

Development samples Validation samples

BS (n � 416) CT scan (n � 643) BS (n � 664) CT scan (n � 507)

AUC 0.82 0.87 0.81 0.86
Brier score 0.080 0.060 0.068 0.061
Calibration slope 0.86 0.90 0.99 0.94

Note. Performance measures were found by applying the predictive models fit in the development
samples to the validation samples.

Merdan et al.: Data Analytics for Optimal Detection of Metastatic Prostate Cancer
Operations Research, Articles in Advance, pp. 1–21, © 2020 INFORMS 7
learning paradigms in this article: semisupervised and
cost-sensitive learning.

Semisupervised learning aims to improve the learn-
ing performance by appropriately exploiting the un-
labeled data in addition to the labeled data (Zhu 2007,
Zhu and Goldberg 2009, Chapelle et al. 2010, Zhou
and Li 2010). The lack of an assigned clinical class for
each patient is themost common situation facedwhen
using observational data in medicine, such as in our
case. This naturally occurs because patients who
appear at high risk of disease receive the gold-stan-
dard test, whereas patients at lower risk may not.

Class imbalance and cost-sensitive learning are
closely related to each other (Chawla et al. 2004,Weiss
2004, He and Garcia 2009). Cost-sensitive learning
aims to make the optimal decision that minimizes the
total misclassification cost (Domingos 1999, Elkan
2001, Ting 2002, Maloof 2003, Masnadi-Shirazi and
Vasconcelos 2010). Several studies have shown that
cost-sensitive methods demonstrated better perfor-
mance than sampling methods in certain application
domains (McCarthy et al. 2005, Liu and Zhou 2006,
Zhou and Liu 2006, Sun et al. 2007).

The use of unlabeled data in cost-sensitive learning
has attracted growing attention, and many techniques
have been developed (Greiner et al. 2002,Margineantu
Figure 2. (Color online) Calibration Plots for BS and CT Scan R
2005, Qin et al. 2008, Liu et al. 2009, Li et al. 2010, Qi
et al. 2013). To our knowledge, however, there has not
been an attempt to apply both semisupervised and
cost-sensitive learning to improve cancer diagnosis
(see the literature reviews in Cruz and Wishart 2006,
Kourou et al. 2015). In this article, we focus on using
kernel logistic regression (KLR) to address unequal
costs andutilize unlabeled data simultaneously based
on a novel extension of the framework for data-de-
pendent geometric regularization (Belkin et al. 2006).

3.2. Classification Models
We begin by introducing our approach for the con-
struction of a classificationmodel that exploits data of
patients with missing imaging outcomes and im-
proves the identification performance on theminority
class by incorporating unequal costs in the classifi-
cation loss.
Regularization is a key method for obtaining smooth

decision functions and thus avoiding overfitting to
the training data, which is widely used in machine
learning (Evgeniou et al. 2000). In this context, we
represent a classifier as a mapping x �→ sign( f (x)),
where f is a real-valued function f : Rd → R, some-
times called a decision function. We adopt the con-
vention sign(0) � −1. Given a set of labeled data,
isk Prediction Models Based on the Validation Samples
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{(x1, y1), . . . , (xl, yl)} ∈ (Rn × {−1, 1})l, a general class of
regularization problems estimates the unknown func-
tion f by minimizing the functional

min
f∈H

1
l

∑l

i�1
L yi, f xi( )( ) + γH‖ f ‖2H, (3)

where L(y, f (x)) is the loss function, and ‖ · ‖H is the
Euclidean norm in a high-dimensional (possibly infinite-
dimensional) space of functions H. The space H is
defined in terms of a positive definite kernel func-
tion, K : Rd × Rd → R. The parameter γH ≥ 0 is called
the regularization parameter and is a fixed, user-
specified constant controlling the smoothness of f
in H. By the representer theorem (Kimeldorf and
Wahba 1971), the minimizer f ∗(x) of (3) has the form

f ∗ x( ) � ∑l

i�1
α∗i K x, xi( ). (4)

As a consequence, (3) is reduced from a high-di-
mensional optimization problem in H to an optimi-
zation problem in Rl, where the decision variable
is the coefficient vector α. The same algorithmic
framework is utilized in many regression and classifi-
cation schemes, such as support vectormachines (SVMs)
and regularized least squares (Belkin et al. 2006).

In order to address the issue of missing data for
patients who did not receive a BS or CT scan, we use
the Laplacian semisupervised framework proposed
by Belkin et al. (2006), which extends the classical
framework of regularization given in (3) via manifold
regularization. This framework relies on two basic
assumptions: the cluster assumption and the manifold
assumption. In our context, the former assumes that
patients with similar characteristics should have simi-
lar observed imaging outcomes; the latter assumes that
patients with similar characteristics should have simi-
lar predicted imaging outcomes. We extend their work
by formulating the logistic loss for KLR, given as
L(y, f (x)) � ln(1 + e−yf (x)), in terms of partial losses to
adjust for class imbalance such that the cost of mis-
classifying a patient with metastasis outweighs the
cost of misclassifying a cancer-free patient. In par-
ticular, we consider the following cost-sensitive op-
timization problem:

f ∗ � argmin
f∈H

1
l

∑l

i�1
δL1 f xi( )( ) + 1 − δ( )L−1 f xi( )( )[ ]

+ γH‖ f ‖2H + γM‖ f ‖2M
, (5)

where the partial losses L1 and L−1 are defined as
L1( f (x)) � log(1 + e−f (x)) and L−1( f (x)) � log(1 + e f (x)).
The regularization parameters γH and γM control the
H norm and the intrinsic norm, respectively. The first
regularization term prefers the decision function to
be a simple classifier, whereas the second term en-
forces that similar patients have similar imaging
outcomes.We refer to the optimization problem in (5)
as cost-sensitive Laplacian kernel logistic regression (Cos-
LapKLR). More technical details about the manifold
regularization in Cos-LapKLR and the proposed al-
gorithmic solution are given in Appendix B. We also
include the supervised cost-sensitive KLR, which we
refer to as Cos-KLR, in our analyses.
In addition to Cos-LapKLR and Cos-KLR, we im-

plemented and tested several other well-known clas-
sification models, including random forests (RFs;
Breiman 2001), SVM (Vapnik 2013), and AdaBoost
(Friedman et al. 2000). Scaling of (2) by a factor of 1/l
establishes the equivalence between LR estimated by
maximum likelihood and empirical riskminimization
with logistic loss, where f (x) � xβ, and β ∈ Rd is a
d-dimensional vector of patient attributes. Hence, we
adopted asymmetric loss functions in LR, which we
refer to as Cos-LR, in a similarmanner as proposed for
KLR to counter the effect of class imbalance due to
having fewer patients with metastasis.
Similar to Cos-LapKLR and Cos-KLR, the SVM

hinge loss can be extended to the cost-sensitive setting
by introducingpenalties formisclassification (Veropoulos
et al. 1999). The regularization parameterC in the cost-
sensitive SVM (Cos-SVM) corresponds to the mis-
classification cost, which involves two parts, that is,
the cost of misclassifying the negative class into the
positive class and the cost of misclassifying the pos-
itive class into the negative class. In this work, the cost
of misclassifying the negative class as positive is set
to C, whereas the cost of misclassifying the positive
class into the negative class is set to C × δ/(1 − δ),
where δ ∈ (0, 1).
To remedy the class imbalance problem with RFs

and AdaBoost, different data sampling techniques
were employed in the experimental evaluation, such
as random oversampling of the minority class (ROS),
random undersampling of the majority class (RUS),
and the combination of both methods. ROS and RUS
are nonheuristic methods that were initially included
in this evaluation as baseline methods. The drawback
of resampling is that undersampling can potentially
lose some useful information, and oversampling can
lead to overfitting (Chawla et al. 2002). To overcome
these limitations, we also implemented advanced
balancingmethods for comparison.A brief discussion
of the concepts underlying these methods is provided
in Appendix C.

3.2.1. Classification Model Results. We adopted two-
fold cross-validation (CV) in the model training pro-
cess. The radial basis function kernel of the form
K(xi, xj) � exp (−γ‖xi − xj‖2) was used, where γ is the
kernel parameter. The continuous attributes were
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normalized to a mean of zero and standard deviation
of one. All models were built and evaluated with
Python 2.7.11 on an HP Z230 work station with an
Intel Xeon E31245W (3.4 GHz) processor with cores
and 16 GB of random access memory. We used the
scipy.optimize package in Python as the optimiza-
tion solver.

Our goal was to obtain a higher identification rate
for metastatic patients without greatly compromis-
ing the classification of patients without metastasis.
Therefore, we created trade-off curves to determine
Pareto-optimal models based on sensitivity and speci-
ficity. Sensitivity, or the true positive rate, indicates the
accuracy on the positive class; specificity, or the true
negative rate, indicates the accuracy on the negative
class. In the concept of Pareto optimality, a model is
considered dominated if there is another model that
has a higher sensitivity and a higher specificity. For
cost-sensitive classification models, we created Par-
eto frontier graphs consisting of the nondominated
models for varying choices of cost parameter based
on twofold CV performance. We conducted experi-
ments for δ ∈ {0, 1}; however, we report results for δ ∈
{0.90, 0.91, . . . , 0.99} to be consistent with the goals of
the project and the perspective of stakeholders who
weigh the misclassification of patients with cancer
much higher than that of patients without cancer.

Following the approach of Hsu et al. (2003) rec-
ommended for SVM, the values of the remaining
parameters for Cos-LapKLR, Cos-LR, and Cos-SVM
models were chosen from a range of different values
after twofold CV at different cost setups. For Cos-
LapKLR, candidate values for the regularization pa-
rametersγH and γMwere chosen from the set {2i | −13,
−11, . . . , 3}, the those for the kernel parameter γ from
{2i | −9,−7, . . . , 3}, and the nearest neighbor parame-
ter k from {3, 5} (see Appendix B for the construction
of the similarity matrix). For Cos-KLR, same ranges
were used for γH and γ. For Cos-LR, candidate values
for the regularization parameter λ were chosen from
the set {2i | −13,−11, . . . , 3}. For Cos-SVM, candidate
values for the regularization parameterCwere chosen
from the set {2i | −5,−3, . . . , 15}, and those for the
kernel parameter γ from {2i | −15,−13, . . . , 3}. We ap-
plied the Pareto frontier–based approach to select the
optimal classifiers for each of these methods for dis-
tinguishing patients with metastasis at different cost
setups during the training process.

For RFs, we used the nominal values recommended
by Friedman et al. (2001) for the number of trees to
grow (500) andminimumnode size (5). ForAdaBoost,
we used single-split trees with two nodes as the base
learner, because this was shown to yield good per-
formance of AdaBoost (Friedman et al. 2000, Schapire
2003). We performed 10 independent runs of twofold
CV to eliminate bias that could occur as a result of the
random partitioning process. For conciseness, the
detailed results from these experiments are presented
in Appendix C. In the remainder of this section, we
summarize results for the cost-sensitivemethods (i.e.,
Cos-LapKLR, Cos-KLR, Cos-LR, and Cos-SVM).
Our initial experiments explored how the cost ra-

tio, δ, affects the classification performance of the cost-
sensitive methods, as the cost ratio is changing. To
illustrate the effect of asymmetrical logistic loss func-
tions, we present Pareto frontier graphs based on
sensitivity and specificity for the symmetric (δ � 0.5)
and asymmetric (δ � 0.95) cases. Figure 3 shows that
increasing δ can improve sensitivity significantly
without greatly sacrificing specificity. We observed
the same trend for Cos-LapKLRmodels predictingCT
scan outcomes, and for Cos-KLR, Cos-LR, and Cos-
SVM models for both BS and CT scan with respect to
increasing values of δ.
Our next set of experiments, in Figure 4, illustrates

the impact of increasing the penalty of L1 loss on the
discriminative ability of the LR and Lap-KLR models
for predicting BS outcomes. For simplicity, we pres-
ent the results for only two dimensions (ln(PSA + 1)
and age). We see that higher penalties on L1 loss in-
crease the region of P(y � 1 | x) (shaded area), corre-
sponding to patients with predicted outcome ŷ � 1,
that is, f (x) � xβ ≥ 0, and, thus, sensitivity of the
classification rule increases and specificity decreases
with increasing values of δ.

4. Bias-Corrected Performance of
Imaging Guidelines

The results presented in Section 3.2.1 for the sensi-
tivity and specificity of alternative classification models
are systemically biased because they are based on only
the patients who received BS or CT scan at diagnosis.
This section provides some background on this prob-
lem of verification bias and presents results for the
application of the proposed methodology we used to
correct for this bias.
4.1. Background
Standard inferential procedures rely on several as-
sumptions concerning study design, such as the ex-
istence of a reference test, usually referred to as a gold
standard, a procedure that is known to be capable of
classifying an individual as diseased or nondiseased.
In practice, gold-standard tests are often invasive and
may be expensive (e.g., BSs and CT scans are gold-
standard tests for detecting metastatic cancer). As a
result, the true disease status is generally not known
for some patients in a study cohort. Moreover, the
decision to verify the presence of the disease with a
gold-standard test is often influenced by individual
patient risk factors. Patients who appear to be at high
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risk of disease may be very likely to be offered a gold-
standard test, whereas patients who appear to be at
lower risk are less likely. Thus, if only patients with
verified disease status are used to assess the diagnostic
Figure 4. (Color online) The Impact of Unequal Misclassification
KLR is Illustrated for δ � 0.50 vs. δ � 0.95
accuracy of the test, the resulting model is likely to be
biased. This bias is referred to as verification bias (or
work-up bias; Begg 1987). This can markedly increase
the apparent sensitivity of the test and reduce its
Costs on the Decision Boundaries of Cos-LR and CosLap-
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apparent specificity (Begg 1987, Kosinski and Barnhart
2003, Pepe 2003).

Several approaches have been proposed to address
the problem of verification bias (Zhou 1998, Zhou
et al. 2009). The correctionmethods proposed recently
have been mainly focused on treating the verification
bias problem as a missing data problem, in which the
true disease status is missing for patients who were
not selected for the gold-standard verification. In the
proposedmissing data techniques, inferences depend
on the nature of incompleteness. In the usual termi-
nology, data are missing at random (MAR) when the
mechanism resulting in their omission depends only
on the observed data (Little 1988). Thus, given the test
results and patient covariates, the missingness mecha-
nism does not depend on the unobserved data (i.e.,
metastatic disease status). Data are said to be missing
completely at random if the missing data mechanism
does not depend on the observed or missing data.

To obtain unbiased estimates of sensitivity and
specificity, Begg and Greenes (1983) developed a
method based on MLE. This method uses the ob-
served proportions of patients with and without the
disease among the verified patients to calculate the
expected proportions among nonverified patients.
The proportions are then combined to obtain a com-
plete two-by-two table, as if all patients had received
the gold-standard test.We used thismethod to correct
for verification bias in the assessment of imaging
guidelines. The underlying assumption in this method
is that the available covariates are the only factors that
influenced the selection of patients recommended for
imaging (i.e., MAR assumption). This is a reasonable
assumption given that the MUSIC data repository
includes all standard covariates related to metastatic
prostate cancer risk.

In this framework, we define the “test” to be the
outcome of applying a given guideline (G), where “+”
or “−” denotes whether a patient is recommended to
receive an imaging test or not under the guideline G,
respectively. The uncorrected sensitivity and speci-
ficity are defined as

Sensitivity � P G+ | Disease present
( )

,

Specificity � P G− | Disease not present
( )

.

Using Bayes’ rule, we estimate the sensitivity and
specificity of the guideline as follows:

Sensitivity � P G+ | Disease present
( )

� P Disease present | G+( )
P G+( )

P Disease present
( ) ,

Specificity � P G− | Disease not present
( )

� P Disease not present | G−( )
P G−( )

P Disease not present
( ) ,
where P(Disease present) and P(Disease not present)
can be calculated as

P Disease present
( ) � P Disease present |G+( )

× P G+( ) + P Disease
(

present |G−)P G−( ),
P Disease not present
( ) � P Disease not present |G+( )

× P G+( ) + P Disease not
(

present |G−)P G−( )

.

Thus, to estimate the sensitivity and specificity of each
guideline,we need to calculateP(Disease present | G+),
P(Disease not present | G−), P(G+), and P(G−). To
estimate P(Disease present | G+) and P(Disease not
present | G−), we first separate the entire population
(with and without imaging results) into two cate-
gories: (1) those patients with G+ and (2) those pa-
tients with G−. To calculate P(Disease present | G+),
we apply the risk prediction model from Section 2 to
estimate the mean probability that the disease is
present in the G+ category of patients. To calculate
P(Disease not present | G−), we apply the risk pre-
diction model to estimate the mean probability that
the disease is not present in the G− category of pa-
tients. We further obtain unbiased estimates of P(G+)
and P(G−) as the proportions of the population in G+
and G−, respectively. We then use these estimates to
calculate the sensitivity and specificity using the
formula defined above.

4.2. Bias-Corrected Results
There are several published clinical guidelines for
BSs and CT scans based on patient prostate cancer
characteristics. These guidelines are summarized in
Table 3. Table 4 presents the bias-corrected results for
these published guidelines. We found that the esti-
mates of uncorrected sensitivity are significantly higher
than the bias-corrected estimates, whereas uncorrected
values for specificity underestimate the true specificity
of the existing guidelines. For example, the uncor-
rected sensitivity and specificity of the American Uro-
logical Association (AUA) guideline (Thompson et al.
2007) for recommending BS were 97.92% and 43.48%,
respectively, whereas the bias-corrected values were
81.18% and 82.05%, respectively, on the develop-
ment samples.
We applied the bias-correction method on the op-

timized classification models of Section 3. Figure 5
shows the Pareto frontier graph consisting of all the
imaging guidelines. The results indicate that the
classification rules obtained using the methods of
Section 3 can provide a diverse range of classification
rules that vary on the basis of sensitivity and speci-
ficity. All of the published guidelines have high sen-
sitivity for BS; however, they vary more significantly
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Table 3. Published Clinical Guidelines for Recommending BS and CT Scan

Bone scan CT scan

Clinical guidelines
Recommend imaging

if any of these: Clinical guidelines
Recommend imaging

if any of these:

EAU (Mottet et al. 2014) GS ≥ 8 EAU (Heidenreich et al.
2014)

GS ≥ 8

cT3/T4 disease cT3/T4 disease
PSA > 10 ng/mL PSA > 10 ng/mL
Symptomatic Symptomatic

AUA (Thompson et al. 2007) GS ≥ 8 AUA (Carroll et al. 2013) GS ≥ 8
PSA > 20 ng/mL PSA > 20 ng/mL
Symptomatic cT3/T4 disease

Symptomatic

NCCN (National Comprehensive Cancer
Network 2014)

cT1 disease and PSA > 20 ng/mL

cT2 disease and PSA > 10 ng/mL
GS ≥ 8
cT3/T4 disease
Symptomatic

Briganti’s CART (Briganti et al. 2010) GS ≥ 8
≥ cT2 disease and

PSA > 10 ng/mL
Symptomatic

Note. EAU, European Urological Association; CART, classification and regression tree.
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in specificity. For CT scan, the AUA guideline had
higher sensitivity and moderately lower specificity.
For BS, all of the published guidelines were at the
Pareto frontier. For CT scan, all of the published
guidelines were dominated by classification rules
described in Section 3 but were all close to the Par-
eto frontier.

To further assess the performance of the statistical
methods, we determine the proportions of the non-
dominated models for each method based on these
two competing criteria. Table 5 shows that there is
no single classification modeling technique that is
sufficient with respect to the estimated number of
Table 4. Performance Characteristics of the Published Guideline

Development sam

Uncorrected B

Clinical guidelines Sensitivity Specificity Sensi

Bone scan
EAU 97.92 33.97 84
AUA 97.92 43.48 81
NCCN 97.92 40.76 82
Briganti’s CART (Briganti et al. 2010) 89.58 45.38 79

CT scan
EAU 98.39 36.49 89
AUA 96.77 49.23 87

Notes. The numbers are percentages. EAU, European Urological Associa
positive imaging tests missed and the estimated number
of negative imaging tests. This finding underscores the
importance of employing multiple methods for optimi-
zation of classification rules.

4.3. Patient-Centered Criteria
In working with MUSIC, we found that interpreting
the results was easier when they were presented in
terms of more patient-centered health outcomes. There-
fore, we considered two important criteria: expected
number of positive outcomes missed and expected
number of negative studies. These estimates around
the impact of specific guideline implementation can
s Before and After Correcting for Verification Bias

ples Validation samples

ias corrected Uncorrected Bias corrected

tivity Specificity Sensitivity Specificity Sensitivity Specificity

.45 75.66 98.44 21.00 89.13 65.98

.18 82.05 96.88 36.00 85.82 74.84

.23 80.86 96.88 32.67 86.94 73.23

.31 83.28 93.75 37.67 85.07 75.99

.92 74.43 100.00 32.04 87.47 75.47

.21 82.53 100.00 45.81 83.91 83.49

tion; CART, classification and regression tree.
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Figure 5. (Color online) Pareto Frontier Graphs Demonstrating the Efficient Frontiers for the Bias-Corrected Accuracy of the
Imaging Guidelines for BS and CT Scan Estimated on the Validation Samples

Note. EAU, European Urological Association; BrigantiQ: 73 , Briganti et al. (2010) method.
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provide useful information for clinicians, specialty
societies, and other stakeholders seeking a satisfactory
trade-off between the benefits and harms of using
these imaging tests for the staging of patients with
newly diagnosed prostate cancer.

To define the criteria to be considered in the ob-
jective function, let pi � P(yi � 1 | xi,β) be the proba-
bility that patient i with attributes xi would have a
positive imaging outcome, where i � 1, . . . ,n, and let
it be estimated from an LR model. Let gi be an indi-
cator variable defined as

gi � 1 if the guideline is satisfied,
0 otherwise.

{

If Z+ denotes a random variable for the number of
positive outcomes missed and Z− a random variable
for the number of negative outcomes, then the criteria
can expressed as

E Z+[ ] � ∑n
i�1

pi 1 − gi
( )

, E Z−[ ] � ∑n
i�1

1 − pi
( )

gi,
Table 5. Proportions of Classification Modeling
Techniques That Are Nondominated with Respect to the
Bias-Corrected Accuracy

Statistical models Bone scan (n � 44) CT scan (n � 42)

Cos-LapKLR 2.27 2.38
Cos-KLR 13.64 0.00
Cos-LR 43.18 64.29
Cos-SVM 25.00 21.43
RFs 15.91 11.90
AdaBoost 0.00 0.00

Note. The numbers are percentages.
where E is the expectation operator. Assuming the
goal is to find an optimal guideline that minimizes an
unweighted function of these two competing criteria,
the optimization model can be expressed as

min Z g
( ) � Z+ g

( )
, Z− g

( )[ ]
subject to g ∈ G,

where G is the set of all imaging guidelines consisting
of the published clinical guidelines and the non-
dominated classification rules from Section 4.2. For
each g ∈ G, we calculated the expected number of
positive imaging outcomes missed and the expected
number of negative imaging outcomes based on the
validation samples. Figure 6 shows that the published
guidelines are very close to the efficient frontier for
both BS and CT scan, while also achieving a missed
metastasis rate of <1%.
Additionally, we estimated the change in total

number of imaging tests that can be expected from
successful implementation of each clinical guideline
compared with current practice. After assessing the
performance of the available clinical guidelines on
the appropriate use of BS and CT scan in newly di-
agnosed prostate cancer patients, we showed that
implementation of the AUA guidelines would reduce
the total numbers of BS and CT scans by 25% and 26%,
respectively, compared with current imaging prac-
tices. Moreover, our models predicted the percentage
of patients with missed metastatic disease to be less
than 1% (Merdan et al. 2014, Risko et al. 2014). Based
on the discussions with urologists, other clinicians,
and patient advocates, 1% was deemed an accept-
able miss rate in light of the significant reduction in
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Figure 6. (Color online) Trade-Off Curves for the BS and CT Scan Imaging Guidelines with Respect to the Missed Metastatic
Cancer Rate and the Number of Negative Studies Estimated on the Validation Samples

Note. EAU, European Urological Association; Briganti, Briganti et al. (2010) method.
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unnecessary imaging. The AUA guideline achieved
this miss rate and was very close to Pareto optimal.
Moreover, the AUA guidelines carried the endorse-
ment of a professional medical society. For these
recommendations, we proposed the AUA guideline
as the final criteria to be implemented, with the
support of our data-driven models.

5. Implementation and Impact
MUSIC is a physician-led, statewide quality-improvement
collaborative that includes 43 urology practices in the
state of Michigan and about 90% of the urologists in
the state. A complete timeline of our project is shown
in Figure 7. The first stage of the project was data
collection. MUSIC has data abstractors at each MU-
SIC urology practice in the state to collect and verify
the validity of the data in the MUSIC data repository.
The next stage was model development, which in-
cluded variable selection,model fitting, and guideline
evaluation using the predictive models. During this
stage, we had regular weekly meetings with the co-
directors of MUSIC to update them with our results
and to obtain feedback from a clinical perspective.
The next stage was model validation, during which
we performed both internal and external validation.
We subsequently started the guideline design stage,
during which our results for the performance of varying
guidelines were presented to practicing urologists. Al-
though risk-based guidelines performed well, MUSIC
decided to endorse a threshold-based policy for several
reasons: (1) according to our models, these guidelines
Figure 7. (Color online) Project Timeline from Data Collection t
were near-optimal with respect to the miss rate and
image usage; (2) a threshold-based policy is easier to
understand and implement than a risk-based policy;
and (3) similar guidelines had already been endorsed by
the AUA.
Our results and the resulting proposed guidelines

were first reviewed by the MUSIC Imaging Appro-
priateness Committee, which included a sample of
practicing urologists from across the state and a pa-
tient representative. Next, a selected subset of guidelines
were reviewed at a MUSIC collaborative-wide meet-
ing with approximately 40 urologists, nurses, and
patient advocates. After achieving consensus with
the collaborative, the MUSIC consortium instituted
statewide, evidence-based criteria for BSs and CT
scans, known as theMUSIC Imaging Appropriateness
Criteria (see the YouTube video at https://youtu.be/
FEIxb_HRHAA). The criteria recommend a BS for
patients with a PSA score of >20 ng/mL or Gleason
score ≥8, and recommend a CT scan for patients
with a PSA score of >20 ng/mL, Gleason score ≥8, or
clinical T stage ≥cT3.
Recognizing the importance of clinical judgment

in staging decisions, the MUSIC consortium set a
statewide goal of performing imaging in ≥95% of
patients that meet the criteria and in <10% of pa-
tients that do not meet the criteria. To implement
the work, our collaborators presented our results at
collaborative-wide meetings with “clinical champions,”
who returned to their practices to present the results
to their own practice group. As part of this project,
o Postimplementation Analysis

https://youtu.be/FEIxb_HRHAA
https://youtu.be/FEIxb_HRHAA
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Figure 8. (Color online) Placard Sent to All Urologists in the
43 MUSIC Practices Illustrating the Selected Imaging
Guidelines to Be Implemented
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MUSIC members were provided with a toolkit in-
cluding placards with the criteria (shown in Figure 8)
and explanations for patients. After implementation,
members also received comparative performance
feedback that detailed how well their practice pat-
terns correlated with the MUSIC Imaging Appro-
priateness Criteria.

After implementing this intervention in 2014, MUSIC
measured postintervention outcomes from January to
October 2015. The results showed an increase in the use
of BSs and CT scans in patients meeting the criteria
Figure 9. (Color online) Avoidance of Low-Value Imaging Usin

***p ≤ 0.001.
from 82% to 84% and from 74% to 77%, respectively.
One of the underlying reasons why the imaging
recommendations were not followed in some cases
could be attributed to economic challenges faced by
patients, such as high copays, depending on a pa-
tient’s health coverage status; however, the full range
of reasons is unknown. Although these values are not
>95%, the MUSIC consortium has made measurable
improvements in a short period of time, and addi-
tional increases are anticipated. As shown in Figure 9,
MUSIC decreased the use of BSs and CT scans in
patients that do not fit the criteria from 11% to 6.3%
and from 14.7% to 7.6%, respectively. Both of these
values are below their goal of performing imaging in
<10% of patients that do not meet the criteria. These
results were presented at the AUAAnnualMeeting in
San Diego, California (Hurley et al. 2016).
6. Conclusions
This work has had a significant societal impact by
decreasing the chance of missing a case of metastatic
cancer and substantially reducing the harm from
unnecessary imaging studies. Additionally, this inter-
vention has reduced healthcare costs without having a
negative impact on patient outcomes. We have esti-
mated that MUSIC saved more than $262,000 in 2015
through reducing unnecessary imaging studies, and
these savings will continue to accrue in future years.
This is a conservative estimate of savings, because
these are early postimplementation results that do
not account for the savings from avoiding unneces-
sary follow-up procedures for false-positive imaging
studies. These savings also do not quantify the more
important reduction in harm to patient health from
g MUSIC Criteria
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reduced radiation exposure, fewer unnecessary follow-
up procedures, and decreased patient anxiety.

The overuse of imaging in the staging of low-risk
prostate cancer patients was raised as the top priority
by the American Urological Association’s Choosing
Wisely initiative. Our work extends this recommen-
dation showing how patient data collected in a large
region can be used to improve the prevision of clinical
decision making. The publications of this work are
building national recognition of this effort that may
result in improvements beyond the state of Michigan
(Merdan et al. 2014, Risko et al. 2014, Hurley et al.
2016). Our publications were cited in the new Na-
tional Comprehensive Cancer Network (2014; NCCN)
guidelines and AUA guidelines (Sanda et al. 2017).
Thus, our work may ultimately influence national
policy for cancer staging.

This work has paved the way for the develop-
ment of guidelines based on individual risk factors
in other areas; thus, we anticipate additional im-
provements to come in future years by building on
the successes described above. For example, this
work has led to a biopsy outcome prediction calcu-
lator, which has been implemented as a web-based
decision support system called AskMUSIC (see https://
askmusic.med.umich.edu/). Moreover, the approach
we describe in this article has broad applicability to
other disease for which imaging is used (e.g., other
cancers like breast cancer, kidney cancer, thyroid
cancer) and other gold-standard tests with binomial
outcomes such asmolecular biomarkers and biopsies.

Ideally, from a research perspective, the impact of
the actual use of the intervention on health outcomes
and cost-effectiveness should be studied through
randomized clinical trials. However, in practice, such
randomized trials are expensive and time-consuming.
Bone scan

Variables
All patients without

BS (n � 1,103)
All patients with

BS (n � 416)

Age (years)
Mean (median) 64.2 (64.4) 68.2 (67.7)
Range 40.4–95.8 41.8–90.5

Clinical stage, No. (\%)
T1 881 (79.9) 216 (51.9)
T2 214 (19.4) 173 (41.6)
T3/4 8 (0.7) 27 (6.5)

PSA, ng/mL
Mean (median) 8.0 (5.2) 61.8 (7.7)
Range 0.2–620.8 0.4–6,873.4
Moreover, there are important ethical issues associ-
ated with imaging patients without any clinical indi-
cation, such as exposure to harmful radiation. Imaging
tests such as CT scans expose patients to significant
amounts of radiation, although withholding imag-
ing from patients in need could result in undetected
metastatic cancer. Using observational clinical data,
we provided a multistep framework for establishing
evidence-based imaging recommendations and evalu-
ated the potential impact of the recommendations
using the predictive models that we developed and
validated. A potential barrier to implementation in
other regions is that the patient population seen in
MUSIC might be different from patient populations
in other practices; for example, the change in patient
population might be the effect of a change in referral
pattern by practitioners or genetic differences that im-
pact the propensity for prostate cancer to metastasize.
The validity of the predictive models we developed
using MUSIC data need to be established in inde-
pendent samples for a wider implementation, which
is possible only in cases where sufficient data have
been collected. Other states are starting to develop
quality improvement collaboratives for prostate
cancer, and we believe that our work provides a road
map for broader implementation to inform health pol-
icy decisions and to improve patient care and pop-
ulation outcomes.
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Appendix A. Patient Characteristics
CT scan

p-value
All patients without
CT scan (n � 1,737)

All patients with
CT scan (n � 643) p-value

0.02 0.17
63.8 (64.0) 66.0 (66.0)
40.4–95.0 40.0–99.0

<0.0001 <0.0001
1,386 (79.8) 359 (55.8)
339 (19.5) 246 (38.3)
12 (0.7) 38 (5.9)

0.003 <0.0001
8.60 (5.2) 49.9 (7.7)
0.23–1,008.9 0.40–6,873.4

https://askmusic.med.umich.edu/
https://askmusic.med.umich.edu/
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Appendix A. (Continued)

Bone scan CT scan

Variables
All patients without

BS (n � 1,103)
All patients with

BS (n � 416) p-value
All patients without
CT scan (n � 1,737)

All patients with
CT scan (n � 643) p-value

ln(PSA + 1) <0.0001 <0.0001
Mean (median) 1.9 (1.8) 2.5 (2.2) 1.9 (1.8) 2.5 (2.2)
Range 0.2–6.4 0.3–8.8 0.2–6.9 0.3–8.8

Biopsy Gleason sumQ: 42 , No. (\%) <0.0001 <0.0001
≤6 488 (44.2) 33 (7.9) 747 (43.0) 62 (9.6)
3+4 439 (39.8) 105 (25.2) 671 (38.6) 174 (27.1)
4+3 137 (12.4) 58 (13.9) 212 (12.2) 97 (15.1)
8–10 39 (3.6) 220 (52.9) 107 6.2) 310 (48.2)

Biopsy cores taken, No. 0.50 0.40
Mean (median) 12.5 (12.0) 12.9 (12.0) 12.5 (12.0) 12.7 (12.0)
Range 4–82 1–78 2–82 1–78

Positive cores, No. 0.0004 <0.0001
Mean (median) 3.2 (3.0) 6.3 (6.0) 3.3 (3.0) 6.2 (6.0)
Range 0–20 1–16 1–20 1–16

Positive cores, % <0.0001 <0.0001
Mean (median) 26.4 (21.1) 51.2 (50.0) 27.0 (23.1) 50.4 (50)
Range 0–100 3.1–100 2.44–100 3.13–100
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Appendix B. Cost-Sensitive Laplacian Kernel
Logistic Regression

We begin by introducing the problem for KLR. LR linearity
may be an obstacle to handling highly nonlinearly sepa-
rable data sets. In such cases, nonlinear classification models
can achieve superior discrimination accuracy compared with
linear models. To include nonlinear decision boundaries in our
problem, we extend the construction from LR given in (2) to
KLR by incorporating a nonlinear feature mapping into
the decision function: f (x) � Φ(x)β (Zhu and Hastie 2005,
Maalouf et al. 2011). Given a set of l imaged patients
{(x1,y1), . . . ,(xl,yl)} ∈ (Rn×{−1,1})l, the optimization prob-
lem for KLR becomes the following:

min
β∈H

1
l

∑l

i�1
log 1 + exp −yi〈β,Φ xj

( )〉( ) + λ

2
‖β‖2

(
, (B.1)

where β ∈ H is the parameter we want to estimate. By (4)
and the kernel trick, that is, 〈Φ(x),Φ(x′)〉 � K(x, x′), the
minimizer of (B.1) admits a representation of the form
β � ∑l

i�1 αiΦ(xi). Thus, we can write (B.1) as

min
α∈Rl

1
l

∑l

i�1
log 1 + exp −yi Kα( )i

( )( ) + λ

2
αTKα, (B.2)

where K is the kernel matrix of imaged patients given as
K � (K(xi, xj))li,j�1, with K(xi, xj) � 〈Φ(xi),Φ(xj)〉, and (Kα)i
stands for the ith element of the vector Kα.

We now extend the supervised KLR to the cost-sensitive
semisupervised KLR via graph regularization as proposed
by Belkin et al. (2006). Assume now thatwe are given a set of
u unimaged patients {xj}j�l+uj�l+1 in addition to the labeled data.
In the sequel, let us redefine K as an (l + u) × (l + u) kernel
matrix over imaged and unimaged patients given by K �
(K(xi, xj))l+ui,j�1 withK(xi, xj) � 〈Φ(xi) ,Φ(xj)〉. Becausewedonot
know the marginal distribution which unimaged patients
are drawn from, the empirical estimates of the underlying
structures (i.e., clusters) inherent in unimaged data are
encoded as a graph whose vertices are the imaged and
unimaged patients and whose edge weights represent
appropriate pairwise similarity relationships between pa-
tients (Sindhwani et al. 2005).

The concept underlying this new regularization comes
from spectral clustering, which is one of the most popular
clustering algorithms (Von Luxburg 2007). To define a
graph Laplacian, we letG be aweighted graphwith vertices
corresponding to all patients. When the data point xi is
among the k nearest neighbors of xj, or xj is among those
of xi, these two vertices are connected by an edge, and a
nonnegative weight wij representing the similarity between
the points xi and xj is assigned. The weighted adjacency
matrix of graph G is the symmetric (l + u) × (l + u)matrixW
with the elements {wij}l+ui,j�1, and the degree matrix D is the
diagonal matrix with the degrees d1, . . . , dl+u on the diag-
onal, given as di � ∑l+u

j�1 wij. We define the weight matrix W
by k nearest neighbors as follows (Belkin et al. 2006):

wij � e−γ‖xi−xj‖2 if xi, xj are neighbors,
0 otherwise.

{

We define f � [f (x1), . . . , f (xl+u)]T and L as the Laplacian
matrixof thegraphgivenbyL � D−W.With the incorporation
of the partial losses from (5), we consider the following cost-
sensitive optimization problem:

f ∗ � argmin
f∈H

1
l

∑l

i�1
δ1 yi�1{ } log 1 + e−f xi( )( )[

+ 1 − δ( )1 yi�−1{ } log 1 + ef xi( )( )] + γH‖ f ‖2H
+ γMfTLf,

(B.3)
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where γH controls the complexity of f in space H, and γM

controls the complexity of the function in the intrinsic ge-
ometry of marginal distribution PX (Belkin et al. 2006). We
refer to the optimization problem in (B.3) as Cos-LapKLR.
The extensions of standard regularization algorithms by
solving the optimization problems (posed in (3)) for different
choices of cost function L and regularization parameters γH

and γM have been developed (Belkin et al. 2006).
As in (4), the representer theorem can be used to show

that the solution to (B.3) has an expansion of kernel func-
tions over both the imagedandunimagedgivenas f ∗(x) � ∑l+u

i�1
α∗i K(xi, x). Let α � [αT

L , α
T
U]T be the l + u-dimensional vari-

ablewithαL � [α1, . . . , αl]T andαU � [αl+1, . . . , αl+u]T , and let
KL ∈ Rl×l be the kernel matrix for imaged patients. In order
to express (B.3) in terms of the variable α, we define PL �
[Il×l 0l×u] and substitute αL as αL � PLα. Let H(α) denote
the objective function with respect to α. Introducing linear
mappings, (B.3) can then be equivalently rewritten in a
finite dimensional form as

H α( ) � min
α∈Rl+u

1
2l

δ1 1 + y
( )Tlog 1 + e− KLPLα( )

( )
+

[

+ 1 − δ( )1 1-y
( )Tlog 1 + e KLPLα( )

( )]
+ γHα

TKα + γMαTKLKα.

(B.4)

The outline of the algorithm we propose for solving Cos-
LapKLR is given in Algorithm B.1. It is natural to use the
Newton–Raphson method to fit Cos-LapKLR because (B.4)
is strictly convex. However, the drawback of the Newton–
Raphson method is that in each iteration, an (u + l) × (u + l)
matrix needs to be inverted. Therefore, the computational
cost is O((u + l)3). When (u + l) becomes large, this can be-
come prohibitively expensive. In order to reduce the cost
of each iteration of the Newton–Raphson method, we
implemented one of themost popular quasi-Newtonmethods,
the so-called Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method. It approximates the Hessian instead of explicitly
calculating it at each iteration (Dennis and Moré 1977). We
used the limited-memory BFGS (LM-BFGS), which is an
Table C.1. Performance of RFs and AdaBoost
Repetitions of Twofold CV

BS (n � 416)

Models Sensitivity Specificity A

RFs
Original 24.97 98.05 79
RUS 74.68 68.13 78
CNN 34.68 94.44 76
NCR 40.95 93.47 79
Tomek links 28.54 97.19 79
ROS 32.46 94.53 77
SMOTE 41.83 89.35 78
Borderline-SMOTE 44.10 90.78 78
SMOTE + Tomek links 45.11 88.80 78
SMOTE + ENN 65.56 78.16 79
extension to the BFGS algorithm that uses a limited amount
of computer memory (Byrd et al. 1995).

Algorithm B.1 (Cost-Sensitive Laplacian Kernel Logistic
Regression)

Input: l labeled examples {(xi, yi)}li�1, u unlabeled exam-
ples {xj}l+uj�l+1

Output: Estimated function f : R(l+u) → R

Step 1: Construct the data adjacency graph with (l + u)
nodes and compute the edge weights wij by k
nearest neighbors.

Step 2:Choose a kernel function and compute the kernel
matrix K ∈ R(l+u)×(l+u).

Step 3: Compute the graph Laplacian matrix, L � D −W,
where D � diag(d1, . . . , dl+u) and di � ∑l+u

j�1 wij.
Step 4: Choose the regularization parameters γH and γM,
and the cost parameter δ.

Step 5: Compute α∗ using (B.4) together with the
LM-BFGS algorithm.

Step 6: Output function f ∗(x) � ∑l+u
i�1 α∗

iK(xi, x).

Appendix C. Results for Random Forests
and AdaBoost

Several data balancing techniques exist in literature to deal
with the class imbalance problem in different forms of
resampling. Two nonheuristic sampling methods are com-
monly used: ROS and RUS.

The synthetic minority oversampling technique (SMOTE)
is a method of oversampling that produces synthetic minority
instances by selecting some of the nearest minority neighbors
of a minority instance and generating synthetic minority in-
stance along with the lines between the minority instance and
the nearestminority neighbors (Chawla et al. 2002). Although
it has shown many promising benefits, the SMOTE algo-
rithm also has drawbacks, such as overfitting. It introduces
the same number of synthetic patients for each minority
patient without considering the neighboring patients,
which increases the occurrence of overlapping between
minority and majority classes. Borderline-SMOTE was
proposed to enhance the original concept by identifying the
for BS and CT Scan in 10 Independent

CT scan (n � 643)
UC Brier Sensitivity Specificity AUC Brier

.35 0.087 32.68 98.18 86.80 0.062

.88 0.20 75.19 77.22 84.20 0.16

.53 0.11 45.36 96.54 86.51 0.076

.47 0.096 46.44 95.72 85.79 0.070

.92 0.086 38.65 97.71 86.55 0.062

.44 0.099 36.94 96.70 85.62 0.069

.32 0.12 40.37 94.64 84.68 0.080
Q: 45.44 0.11 40.07 95.16 85.06 0.078

.16 0.12 40.63 94.47 84.83 0.080

.37 0.17 56.80 83.52 82.89 0.14
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Table C.1. (Continued)

BS (n � 416) CT scan (n � 643)
Models Sensitivity Specificity AUC Brier Sensitivity Specificity AUC Brier

AdaBoost
Original 18.78 95.63 64.29 0.24 33.91 96.55 80.87 0.24
RUS 62.67 62.13 68.87 0.24 71.64 73.10 81.08 0.22
CNN 33.41 84.85 61.86 0.24 43.99 84.69 75.21 0.24
NCR 38.62 92.42 76.37 0.23 43.63 95.69 80.74 0.23
Tomek links 28.31 95.66 71.34 0.24 38.45 96.55 80.87 0.24
ROS 19.15 95.01 64.79 0.24 38.77 95.03 80.44 0.24
SMOTE 32.51 88.72 63.71 0.24 45.25 92.16 79.17 0.24
Borderline-SMOTE 35.13 89.91 66.29 0.24 42.08 92.40 79.53 0.24
SMOTE + Tomek links 33.84 87.63 64.76 0.24 43.23 91.58 78.64 0.24
SMOTE + ENN 65.98 74.90 79.14 0.23 63.44 83.98 81.99 0.23

Note. Sensitivity, specificity, and AUC are reported in percentages.
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borderline minority samples (Han et al. 2005). In order to
obtain well-defined class clusters, several data cleaning
methods such as the edited nearest neighbor (ENN) rule
(Batista et al. 2004) and Tomek links (Tomek 1976) have
been integrated with SMOTE. SMOTE combined with two
data cleaning techniques, Tomek links and the ENN rule
(Wilson 1972), have shown better performance in data sets
with a small number of minority instances.

To improve upon the performance of random under-
sampling, several undersampling methods combined with
data cleaning techniques have been proposed, such as
Tomek links, the condensed nearest neighbor rule (CNN;
Hart 1968), and the neighborhood cleaning rule (NCR;
Laurikkala 2001). In this work, we implement and test 10
different methods of under and oversampling to balance
the class distribution on training data. These methods are
available in the imbalanced-learn package in Python (Lemaı̂tre
et al. 2017). We performed 10 independent runs of twofold
cross-validation on the development samples. The results
from these experiments are summarized in Table C.1.

The experimental results indicate that the accuracy of
classification rules on the BS and CT scan data sets de-
veloped by RFs and AdaBoost can be improved via model-
independent data-driven approaches. For instance, the
baseline RFs identifying patients with bone metastasis
obtained a sensitivity of 24.97% and specificity of 98.05%,
whereas RFs combined with RUS improved the sensitivity
to 74.68%while reducing the specificity to 68.13%. RFs and
AdaBoost combined with RUS achieved the highest sen-
sitivity and AUC in both BS and CT scan data sets. These
results clearly illustrate the inadequacy of the baseline RFs
and AdaBoost in recognizing metastatic patients.
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